

Exercise 1

2/2

2/2

Exacise 5

a)
$$\Delta \mathcal{E} = hV = h \left| \left(-\frac{\gamma B_o}{2\pi} \right) (1 - \sigma) \right| \approx h \frac{\gamma B_o}{2\pi} = 6.626 \cdot 10^{-34} \cdot \frac{2.68 \cdot 10^8 s^{-1} T^{-1} \cdot 11.7 T}{2\pi} = 3.307 \cdot 10^{-25} \text{ J}$$

1.
$$T = 298K - \frac{N_B}{N_A} = exp(-\frac{\Delta E}{kT}) = exp(-\frac{3.303 \cdot 10^{-25}}{1.381 \cdot 10^{-23} \cdot 298}) = 0.9999196$$

2.
$$T = -150 + 273.15 = 123.15 \text{ K} - \frac{N_B}{N_A} = 0.999806$$

b) we would charge -150°C to do the NHR, because if the temperature decreases, than the nuclear polarisation is bigger and the NHR signal will also be bigger (NHR signal $\propto P$, NHR signal $\propto \frac{4}{T}$).

Also, it is important to know that the noise is proportional to \sqrt{T} .

2/2

Exercise 3

- · $alkanes(sp^3):l0eV.$
- · alkenes (sp2): dev.

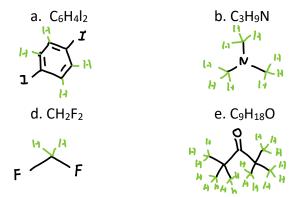
From the theory, $\partial_{\rho} \propto -\frac{1}{\Delta} \left\langle \frac{1}{R^3} \right\rangle$, where Δ = average excitation energy; R = distance nucleus-electrons. The absolute value of the excitation energy is higher for alkanes (because ∂_{ρ} is more negative).

The shielding constant $\sigma = \sigma_d + \sigma_p$, where $\sigma_d = \text{diamagnetic contribution}$, $\sigma_p = \text{paramagnetic contribution}$.

Assuming that σ_p is the dominant contribution, $\sigma \cong \sigma_p$. Thus, the σ_p all benes is more negative than σ_p all cones.

Also, greater shielding gives smaller chemical shift: $5 = 10^6 \left(\frac{5 \text{ ref} - 5}{1 - 5 \text{ ref}}\right)$ Thus, 5 is larger for very negative 6 = 0 albenes.

The assumption was that the paramagnetic contribution is alonutron). It could maybe be explained by the fact that, there is not which polarisation in a C-C band or C=C band. So if we added an EN group, it would probably move the electrons and thus we would have had a bigger aliamagnetic contribution.


Grap 1A: Arnav Casalpsim Emma kappeler Ludavica Fracassi Alassa Martinelli Chloé Eggli

CH-314 Structural Analysis ruben.rodriguezmadrid@epfl.ch rav.cowen@epfl.ch

Jigsaw 2A

all the H are equivalent

2/2 1. [Hore Section 2.2] The following compounds all exhibit a single line in their ¹H NMR spectra. Deduce their structures. See also: Jigsaws 2B.3, 2C.2, 2D.1, and 2E.1.

c. C₅H₈Br₄

2. * 1 H has a gyromagnetic ratio of 2.68 × 10^{8} rad·s $^{-1}$ T $^{-1}$.

a. What are the relative populations of the α and β spin states of a proton in a 11.7 T spectrometer, at both room temperature and -150°C? The equation for the Boltzmann distribution is given below, where $k = 1.381 \times 10^{-23}$ J/K. Hint: Use the Larmor frequency to determine the energy difference.

b. Based only on the answers to the previous question (i.e., ignoring changes in state of the sample, equipment logistics, etc.), which of these two temperatures would you choose to run an experiment? Why?

we would choose -150°c to run an experiment because the relative population are smaller. So the population levels are more different and so we can see more change at this temperature of -150°c The NMR signal is proportional to the difference in population

3. [Hore Section 2.2 and 2.3] The lowest energy electronic transitions in alkanes and alkenes are approximately 10 eV and 8 eV respectively. Predict whether saturated (sp³) or unsaturated (sp²) ¹³C nuclei have larger chemical shifts. Assume the paramagnetic contribution is the dominant contribution. Justify the assumptions made in this exercise.

if higger electionegativity, there is a greater electionic repulsion and therefore the chemical shift decreases.

Sp 11-CEC+

1/2

the chemical shif of sp3 2 sp2

Justify with equation (2.8) from Hore.

1.75/2

Madelein huyghebaert. Amanda Rehn Nadim Khalife Hannah Hajj Youssef Kacem

CH-314 Structural Analysis ruben.rodriguezmadrid@epfl.ch ray.cowen@epfl.ch

Jigsaw 2A

1. [Hore Section 2.2] The following compounds all exhibit a single line in their ¹H NMR spectra. Deduce their structures. See also: Jigsaws 2B.3, 2C.2, 2D.1, and 2E.1.

2/2

d.
$$CH_2F_2$$
 e. (

- 2. * ${}^{1}H$ has a gyromagnetic ratio of 2.68 × 10 8 rad·s ${}^{-1}T^{-1}$.
 - 2/2 a. What are the relative populations of the α and β spin states of a proton in a 11.7 T spectrometer, at both room temperature and -150°C? The equation for the Boltzmann distribution is given below, where $k = 1.381 \times 10^{-23}$ J/K. Hint: Use the Larmor frequency to determine the energy difference.

$$\frac{N_{\beta}}{N_{\alpha}} = \exp\left(-\frac{\Delta E}{kT}\right)$$

$$\frac{N_{\beta}}{N_{\alpha}} = \exp\left(-\frac{\Delta E}{kT}\right)$$

$$\frac{N_{\beta}}{N_{\alpha}} = \exp\left(-\frac{\Delta E}{kT}\right) = \frac{2.98 \times 40^{8} \cdot 44.7^{2}}{18} = 0.9493 \times 40^{8} \text{ Mg}$$

$$\Delta E = V_{\lambda \text{answer}}, \quad h = 6.626 \times 40^{84} \text{ J. Mg}^{-1} \times 3.785 \times 40^{8} \text{ Hg} = 3.804 \times 40^{-25} \text{ J}$$

$$\frac{N_{\beta}}{N_{\alpha}} = \exp\left(\frac{-\Delta E}{kT}\right) = \exp\left(\frac{-3.304 \times 40^{-25}}{4.581 \times 40^{-25} \times 1.98}\right) \approx 0.99933 \text{ at } 423 \text{ K}$$

$$= \exp\left(\frac{-3.304 \times 40^{-25}}{4.581 \times 40^{-25} \times 1.98}\right) \approx 0.99934 \text{ at } 238 \text{ K}$$

- b. Based only on the answers to the previous question (i.e., ignoring changes in state of the sample, equipment logistics, etc.), which of these two temperatures would you choose to run an experiment? Why?
 - In order to get a bigger enignal, we want a higher polanizat" which is correlated to the difference in population. * At 123K, the difference is slightly bigger so we would rather use this temperature to run the experiment.
- 3. [Hore Section 2.2 and 2.3] The lowest energy electronic transitions in alkanes and alkenes are approximately 10 eV and 8 eV respectively. Predict whether saturated (sp³) or unsaturated (sp²) ¹³C nuclei have larger chemical shifts. Assume the paramagnetic contribution is the dominant contribution. Justify the assumptions made in this exercise.

2/2

- m energy of alkenes (8 eV) (than alkanes, it's safe to say that the absolute value of or is higher for alkenes, or is more negative